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The characteristics and possibilities of the methods of generalized analysis, 
defined as the theory of the means of universalizing quantitative investiga- 
tion, are examined, together with examples of the application of these method~. 

Generalized Analysis* 

The development of methods of generalizing the results of numerical solutions and ex- 
periments has led to their being combined in a single system of scientific knowledge, namely 
generalized analysis or the study of methods of universalizing quantitative investigation, 
i.e., determining the most rational form in which to represent the results obtained so as to 
maximize their region of applicability. Generalized analysis is characterized by a single 
universalization principle, namely transition to new variables that include, in implicit 
form, the parameters of the problem, which thus lose their role of independent arguments. 
This principle can take two essentially different forms insofar as the parameters can be 
broken up into two groups of quantities very dissimilar with respect to both their physical 
nature and the place they occupy in the mathematical model of the process. The first group 
consists of the parameters that determine the material properties of importance to the pro- 
cess. These are a kind of physical quantity corresponding to dimensional formulas of com- 
plex structure constructed from the dimensional formulas for the original variables. The 
parameters in question enter into the composition of the equations of the problem. The 
second group contains parameters that are certain particular (so-called parametric or repre- 
sentative) values of the original variables known from the formulation of the problem. They 
serve as a means of determining specific features of the physical circumstances important 
for the development of the process but not depending on it and are introduced via the 
boundary conditions. 

If the parameters entering into the composition of the new variables belong to the sec- 
ond group, then the transition to these variables can be made by means of a substitu'~ion 
of the type z = z0z, i.e., by replacing the absolute value of z by its relative valu~ ~ = 
z/z0, where z 0 is its parametric value. This is the beginning of a path which, naturally, 
by logical necessity, leads directly to the set of results obtained in classical similtarity 
theory. These results are well known and very widely employed [i]. Here, we will confine 
ourselves to recalling that the variables are transformed by combining all the parameters 
into a relatively small number of dimensionless power complexes (similarity criteria or 
dimensionless numbers z), which are the parameters of the problem converted to the nev vari- 
ables. At the same time, the conditions of uniqueness of the solution are universali~;ed (by 
virtue of the obvous equation z0 = z0/z0 = i). As a result, the unknown function, repre- 
sented in relative form, is determined as a function of the relative independent variables 
and similarity criteria. On reverting to absolute values, each particular solution gives 
rise to a set of solutions corresponding to various parametric values of the variable,s, 
which in different combinations are separated from the criteria as individual scales. Ulti- 
mately, universalization is achieved at the level of the transition from individual pheno- 
mena to groups of similar phenomena in complete conformity with the nature of the initial 
operation, the significance of which consists in the elimination of such individual charac- 
teristics of the phenomenon as the absolute values of the variables and transition to rela- 
tive descriptions. 

* The exposition takes as its frame of reference the boundary value problem of mathematical 
physics. 
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The second form of transformation of the variables, based on the incorporation of para- 
meters of the first group, leads, as in the previous case, to a transition from absolute to 
relative values. However, the transformation operation itself is, both technically and physi- 
cally, much more complex. This is because the transformed variables and parameters are quan- 
tities that dimensionally are not at all homogeneous. The transformation is carried out as 
follows [2]. For each variable we introduce a special, initially undetermined value, which 
is called the characteristic value and denoted by z,. Thus, the initial substitution takes 
the form z = z,z+, where z+ = z/z, is a dimensionless variable. Clearly, this operation 
must lead to the formation of dimensionless power complexes composed of the parameters of 
the first group and the characteristic values of the variables and representing the parameters 
of the problem converted to dimensionless variables. The complexes ~, (we adopt thisnota- 
tion in order to stress the analogy between them and the similarity criteria ~) are distin- 
guished by the fact that their numerical values are not determinate. We require them all to 
reduce to unity, which means, essentially, that the quantities z, take numerical values such 
that the equations are completely universalized. 

Obviously, in order to satisfy this requirement it is necessary that the number r of 
complexes ~,, i.e., the number of equations ~ = I, be not greater than the number v of vari- 
ables (r ! v)" If r > v, for some of the complexes, r - v in number, definite values are 
established, as a result of which they go over into the category of similarity criteria. 
The boundary conditions are also a source of criteria formation, since each parametric value 
of a variable, converted to dimensionless form, becomes a criterion of the type z0/z ,. How- 
ever, as distinct from the equations, the boundary conditions can be subjected to manipula- 
tion (transformation of coordinate system, discarding of weak conditions), leading to the 
elimination of the parametric values. Moreover, when r < v the system of equations ~ = 1 
does not determine the numerical values of all the quantities z, and hence in the correspond- 
ing criterion it is possible to set z, = z 0 and thereby reduce it to unity. Practical ex- 
perience with the application of this method of universalization shows that, as a rule, its 
use leads to considerable or even complete universalization of the equations and sometimes, 
though admittedly not very often, to the solution of the problem as a whole. Everything that 
has so far been said about the generalized (in the relative representation) and individual 
solutions (in absolute quantities) remains valid, except that the relationship between them 
is established in terms not of parametric but of characteristic scales. From this stand- 
point, the two forms of universalization of quantitative investigation considered can be dis- 
tinguished as the method of parametric scales and the method of characteristic scales. 

The method of characteristic scales is a highly flexible one and this property, attri- 
butable to the original indeterminacy of the scales, opens up new possibilities. As noted 
above, the use of the method ensures a higher level of universalization and, under favorable 
conditions, the complete universality of the solution (although, in the language of simil- 
arity theory, the physical circumstances are not self-similar and the similarity criteria 
are not degenerate). Below, it will be shown that a situation in which the use of the 
method makes possible the determination of the form of the function in the end equation or, 
under more complex conditions, a significant simplification of the problem is physically 
real. 

The following feature of characteristic scales deserves special attention. When v ! r 
they are formed exclusively from the parameters of the first group. This means that they 
are completely determined by the properties of the process itself. Thus, as distinct from 
the parametric values of the variables which, reflecting the external conditions, are as- 
signed quite arbitrarily relative to the process, the characteristic values are intrinsic 
natural scales of the process and provide a good basis for estimating the order of the values 
of the dimensionless variables (under conditions such that all the complexes reduce to unity, 
which indicates the more or less uniform intensity of all the physical effects important to 
the process). If v > k and some characteristic value is identified with a parametric value, 
then the scales may be considered natural only if it is certain that by means of this para- 
metric value a condition of decisive importance for the development of the process is ex- 
pressed. 

Let us now consider some examples to illustrate the method of characteristic scales [2- 
5]. In the interests of convenience and the more complete formalization of the apparatus of 
investigation of concrete problems (one-dimensional and two-dimensional problems will be 
considered), we will introduce the concept of a self-similar (similar) solution, by which we 
understand the special situation in which it is possible to determine the form of the unknown 
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function in the end equation or implement a change of variables such that the two-dimen- 
sional problem is reduced to one-dimensional form. 

For the existence of a self-similar solution it is sufficient that 

k < v ,  (1)  

where k is the total number of dimensionless power complexes, including similarity criteria 
of the type z0/z ,, less the criteria constructed wholly of parameters of the first group (a 
typical example is the Prandtl number) - the emergence of such criteria as arguments does 
not prevent the obtaining of a self-similar solution. Inequality (i) may be considered not 
only a sufficient but also a necessary condition of existence of a self-similar solution. 
In the case of the one-dimensional problem (v = 2, k = i) the equation for the dimensionless 
unknown variable can be written in the form: 

~ l ~  = ~+ (~/l,; a~, ~ . . . . .  ~.~), ( 2 )  

where ~ is a dimensional power complex composed of parameters of the first group; s is the 
characteristic scale for extension; zl, z2,..-, Vm are dimensionless numbers containing only 
parameters of the first group. The scale s remains indeterminate and can be chosen arbi- 
trarily, but in this case the function r must be homogeneous. This property is pos~essed 
only by a power function [i]. Sometimes an equation of type (2) cannot be written for the 
function itself but can be written for its first derivative. In this case (when n = I) the 
unknown distribution will be logarithmic. Thus, the self-similar solution of the on,~-dimen- 
sional problem is either a power function or a logarithmic function. 

For the two-dimensional problem we can write, for example: 

~+ = ~+(x+, ~+; ~ ,  ~ . . . . .  n~). ( 3 )  

Here, from two equations for three characteristic scales (r x,, ~,) we have 

�9 , = ~ l ~ ' ;  ~ , = n ; ~  (4) 

and 

% ~ = ~ + ( x / / , ,  , / ( ~ l ~ ) ;  ~ ,  n2 . . . .  , ~ ) '  ( 5 )  

The scale ~, remains indeterminate, so that Eq. (5) can be reduced to the form: 

~=U~x~+(~/(~#~ ' ) ;  ~1, ~2, . . .  , ~m). (6)  

It is assumed that a solution of the problem exists and is unique; therefore relation 
(6) implies a transition from a partial to an ordinary differential equation. 

The method of characteristic scales has definite advantages when it comes to so!~ing 
optimization and technicoeconomic problems. Here, a positive effect can be achieved by 
going over to generalized variables and abandoning the "traditional" form. A proble~ typi- 
cal in this respect is examined in [6], where the efficiency of convective heat-transfer 
surfaces of complex shape is estimated. 

If we forego the use of such conventional (for channels of complex shape) concepts as 
the average throughput and equivalent diameter, it is possible to obtain a generalized equa- 
tion for the dimensionless heat-transfer coefficient ~+ in the form: 

~+ = ~/(cp - V V n )  = f~ [11(~) ~ n / N ,  ( 7 )  

where n is the specific power expended on pumping through the gaseous heat-transfer agent. 
This relation enables us not only to carry out design calculations but also to estimate, in 
convenient form, the comparative efficiency of surfaces of complex shape. The use of Eq. 
(7) for determining the minimum dimensionless reduced annual consumption makes it possible 
to find the most efficient heat transfer surface operating regime. It has been shown that 
in a number of cases a rational choice of operating regime gives better results than re- 
placing the surface in question by another known to be more efficient, while retaining the 
previous operating regime. 

The existence of a rigorous system for obtaining generalized variables makes it possible 
successfully to employ the method of characteristic scales for testing the validity of theo- 
retical hypotheses. This is of particular value in connection with the various kinds of 
semiempirical theories typically associated with problems of turbulence, boiling heat trans- 
fer, fluidization, etc. 
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In [7, 8] a phenomenological model of the phase motion in a fluidized bed is considered; 
the application of the method of characteristic scales to the model is demonstrated and a 
direct experiment - testing the necessary and sufficient conditions of similarity of two 
fluidized bed apparatuses - is discussed. 

It is worth noting two points in particular, both of which illustrate the value of the 
method of characteristic scales as an investigative tool and reveal the reasons for the lack 
of success in modeling a fluidized bed. Firstly, it was found that the natural radial scale 
of the momentum transfer process in the unloaded part of the bed is commensurable with the 
overall dimensions of even industrial (let alone laboratory) apparatus and more often than 
not exceeds them. Consequently, the transfer process cannot develop in the radial direction, 
and the degree of "suppression" plays a decisive part. Secondly, the natural scales charac- 
terizing the grid zone depend on the hydraulics of the entire technological chain. Conse- 
quently, the hydrodynamics of the fluidized bed have a "hidden" degree of freedom, since it 
is part of a system and the system influences its part. 

The method of characteristic scales makes possible the optimal organization of the numeri- 
cal solution of problems on a computer, where a leading role is played by the development of 
a physicomathematical model. In fact, to the computer programmer's key question concerning 
the degree of accuracy with which the solution should be obtained the developer of the model 
replies: with an absolute accuracy of not more than i0 -i times the natural scale of the un- 
known function. The model itself does not provide greater accuracy, and a rougher solution 
is not acceptable. The problem of quantization of the space-time manifold should not be 
solved arbitrarily by the computer programmer. His natural tendency to reduce the computa- 
tion time and fit the problem into the computer's memory leads to a coarsening of the cells 
of the space-time grid. For the model developer this means that the end result will fail 
to reflect the influence of those physical effects which have small natural linear and time 
scales. The absolute dimensions of the cells should not exceed i0 -i times the corresponding 
natural scales. 

In conclusion, we note the following. If the basic equations of the problem are not 
given, then in constructing the complexes ~ (or ~,) the unknown equations can be replaced 
by determinant equations, i.e., by equations that determine the secondary quantities as func- 
tions of the primary quantities and are represented in the form of dimensional formulas. In 
this case the primary quantities not important to the problem but present in the individual 

~omplexes can be eliminated by combining the corresponding complexes. 

Investigation of Momentum, Heat and Mass Transfer in 

Turbulent Wall Flows by Means of Dimensional Analysis 

Although the universal law of turbulent friction 

U 1 / u .  = V~-78  = ~-1  l~(~u,/~) + B § B~ (8) 

d e r i v e d  by means o f  d i m e n s i o n a l  a n a l y s i s  has  been  known s i n c e  t h e  end o f  t h e  t h i r t i e s ,  t h e  
a n a l o g o u s  u n i v e r s a l  law o f  t u r b u l e n t  h e a t  and mass t r a n s f e r  was n o t  d e r i v e d  u n t i l  compara-  
t i v e l y  r e c e n t l y  [ 9 ] :  

Re Pr ]/~8 
Nu-= 

In (Re -I/~7-8).+ fi (Pr) § ~, - -  ~2 + ~a -i/~78 ( 9 )  

Here, B i and ~i are constants that depend on the type of flow (pipe, plate, etc.), and B 
and ~(Pr) determine the velocity and temperature (or concentration) drop in the viscous sub- 
layer and, for a rough wall, also depend on the roughness parameters. It was found that the 
existing experimental data, supplemented by specially designed experiments [10], make it pos- 
sible to determine the values of all the constants and functions in (8) and (9). For exam- 
ple, the turbulent Prandtl number Pr t in a logarithmic sublayer was found to be equal to 
0.85 [9], so that ~ = Prt/< = 2.1, and ~ (Pr) = (3.85Pr i/3 - 1.3) 2 + 2.1 in Pr. In this 
case Eq. (9) made possible a perfectly satisfactory description of, for example, experiments 
on the heat and mass transfer associated with developed turbulent flow in smooth pipes car- 
ried out on the intervals 5.103 ~ Re ~ 2"106 and 10 -2 ~ Pr ~ 105 . Moreover, a detailed stu- 
dy of the characteristics of flow over rough surfaces has made it possible [ii, 12] to de- 
termine the roughness functions B and ~ in Eqs. (8) and (9) and on that basis to develop, 
for technically important cases of two-dimensional roughness, a complete method of calculat- 
ing the coefficients of friction I and heat and mass transfer Nu. 
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On the basis of the results obtained, certain additional ideas concerning the develop- 
ment of the thermal boundary layer in a stabilized turbulent flow [13, 14], and specially 
designed experiments [15], it has also proved possible to develop a method of calculating 
Nu on the thermal entrance length [16] valid over a broad range of variation of the ~eo- 
metric and regime parameters for various boundary conditions. 

The subsequent development of the approach described has involved the study of more 
complex cases of turbulent flow subjected to various influences. Thus, for example, it has 
been found that accelerating or decelerating flows give rise to a "gradient sublayer," the 
self-similar structure of the turbulence in which is determined no longer by the parameter 
u, but by the kinematic coefficient of the longitudinal pressure gradient p-ldp/dx. Here, 
too, on the basis of dimensional considerations it has proved possible not only to obtain 
the general form of the velocity profiles and the law of friction of gradient flows against 
an underlying surface [17, 18] but also to study the fine structure of the turbulence in 
the gradient sublayer [19, 20]. Comparison with the available experimental data aga:n 
proved perfectly satisfactory. 

We note, moreover, that dimensional considerations, supplemented by an hypothesi~ per- 
fectly analogous to the assumption on which the theory of small-scale turbulence is based, 
have made it possible [20-22] to describe the shape of the turbulent fluctuation spec:tra in 
a region of anisotropic eddies (much smaller, however, than the external scale of the flow) 
and have thereby opened up the path for the study of the large-scale eddy structure 1:hat 
determines the momentum, heat and mass transfer in real flows. 

Generalized Relations for the Transport 

Properties of Amorphous Materials 

It is not uncommon to encounter problems in which the concept of similarity is r~stric- 
ted to finding relations linking the transport properties of a body with certain dimension- 
less parameters determined by the geometric structure of the material and the dynamic char- 
acteristics of the interaction between the elements of the structure and, moreover, with 
the external conditions (so-called thermodynamic similarity). Under the conditions of appli- 
cation of the methods of generalized analysis to the study of transport properties this 
situation arises when the basic equations of the process and the conditions at the boundary 
are missing from the formulation of the problem itself, but at the same time, all the para- 
meters of importance to the process, determined from a detailed study of the physical struc- 
ture of the object of investigation, are known. 

The methods of thermodynamic similarity can be used for investigating the transport pro- 
perties of a material in generalized form only on the assumption that the thermodynamic 
parameters of a certain special fundamental (critical) state, used as the parametric scales, 
are known. However, in the case of amorphous materials, in constructing the generalized 
relations it is not possible to base oneself on scales of this kind owing to the inaccess- 
ibility of the critical state of these materials. At the same time, amorphous materials have 
another special state - the glass transition point or solid/liquid interface. Since the 
parameters of this point must be determined experimentally, the parametric scales are not 
directly known. Therefore the general relations are constructed in two stages: (a) t~e re- 
lations between the parameters of the glass transition point, represented in dimensio:~less 
form by means of characteristic scales, are found; (b) general relations are constructed 
for the properties investigated using as parametric scales the values of the glass transi- 
tion point parameters obtained by calculation. This method of construction leads to complete- 
ly universal generalized equations for the transport properties of amorphous substances. 

Experimental data on the thermal conductivity, diffusion and heat capacity of app::oxi- 
mately 80 polymers and on the thermal conductivity and diffusion of about I00 silicate glas~ 
ses, obtained over a broad temperature interval, have been analyzed in accordance with this 
scheme. The discrepancy between the calculated and the experimental values of the properties 
studied lies within the limits of experimental error [23, 24]. 

Intensification of Convective Heat Transfer 

by Creating Pressure Nonuniformities 

The scientific content of the heat transfer intensification problem, in accordance with 
its physical nature, reduces to the creation in the flow of temperature and velocity distri- 
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butions such that the motion of the elements of the moving medium involves more transfer of 
heat than of momentum [25]. The corresponding physical situation is very unusual, highly 
complex, and can only be created artificially if the development of the process is carefully 
controlled. These considerations underlie a special trend in the solution of the convective 
heat transfer intensification problem based on the idea of acting on the micro- and macro- 
structure of the flow by artificially creating pressure nonuniformities by means of specially 
profiled surfaces [26]. 

In practice, this principle is embodied in flow with a longitudinal alternating pressure 
gradient in the form of an alternation of divergent and convergent channel flows; in flow 
with a succession of standing eddies; in the parallel motion of two flows - one with a lon- 
gitudinal alternating pressure gradient and another in which the gradient is practically 
zero; in the parallel motion of two flows with longitudinal alternating pressure gradients 
whose pressure fields are mutually displaced by half a wavelength; and in flow with a series 
of separation zones forming a sequence of regions of divergent and convergent channel flow. 

The principle has actually been applied in the following structural forms: surfaces with 
alternating plane diffusers and contractions, surfaces with crescent-shaped projections 
designed to create a series of standing eddies that reproduce the hydrodynamic conditions 
characteristic of geometric diffusers; surfaces with lengthwise wavy finning; surfaces with 
perforated lengthwise wavy finning; and surfaces with angular perforated adapters. 

All these cases involve the creation of specific pressure nonuniformities which generate 
secondary flows in the form of local transverse motions that lead to intense mass transfer 
between the flow core and the wall zone [27] or in the form of discrete alternate injection 
and suction in the boundary layer zone [28]. 

For the time being, we are still a long way from reaching that level of understanding 
that would enable us to construct a quantitative theory of the transfer processes in such 
complex systems as the surfaces that create the above-mentioned pressure nonuniformities. 
Therefore direct experiment is being used as the basic quantitative method of investigation, 
and the theory of similarity as a means of generalizing and analyzing the experimental data. 
In order to construct a rational quantitative theory it will be necessary to accumulate a 
very large volume of experimental facts and physical ideas. 

The extensive experimental material on the heat transfer and drag of the surfaces devel- 
oped, in both gas and liquid flows, has provided a reliable foundation for engineering cal- 
culations and design [29-36]. In efficiency these surfaces surpass known surfaces of the 
same kind and can be confidently recommended for industrial use [28-31]. 

NOTATION 

Cp, specific heat at constant pressure; k, r, and v, numbers of criteria, complexes and 
variables z; s an extension; n, an exponent or specific power; p, pressure; x and ~, argu- 
ments; z, a variable (argument or function); ~, heat-transfer coefficient; 6, surface compact- 
ness coefficient; 6, layer thickness; <, Prandtl-Karman constant; l, coefficient of fric- 
tion; p, density; 9, kinematic viscosity coefficient; Re, Reynolds number; Nu, Nusselt number. 
Indices: 0, parametric value; *, characteristic value; +, dimensionless value; r, relative 
value; t, turbulent value. 
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